محاسبة کارآیی اقتصادی- زیست‌‏محیطی تولید محصول جو بر مبنای ردپای آب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری اقتصاد کشاورزی، دانشکدة کشاورزی، دانشگاه شیراز، شیراز، ایران.

2 استادیار گروه اقتصاد کشاورزی، دانشکدة کشاورزی، دانشگاه شیراز، شیراز، ایران

چکیده

در جریان دستیابی به اهداف اقتصادی (کارآیی اقتصادی- ‌‌زیست‌‏محیطی)، در نظر گرفتن تأثیرات زیست‏‌محیطی تولید محصولات زراعی ضروری است. کارآیی اقتصادی- ‌‌زیست‏‌محیطی می‌تواند معیاری مناسب برای ارزیابی پایداری تولید محصولات و کارآیی اقتصادی آن به‏‌شمار ‌آید. از آنجا که تولید محصولات کشاورزی با ایجاد اثرات زیست‏‌محیطی همراه است و در مقیاس جهانی، بیشترین میزان مصرف آب برای تولید محصولات کشاورزی استفاده می‌شود. بنابراین، در مطالعة حاضر، به‌منظور بررسی اثرات زیست‏‌محیطی تولید محصول جو، از شاخص ردپای آب استفاده شد. بدین منظور، ابتدا ردپای آب این محصول با استفاده از اطلاعات هواشناسی روزانة نود ایستگاه در سراسر کشور در استان­‌های کشور طی دوره 1399-1379 محاسبه و سپس، با استفاده از روش مرزی تصادفی، کارآیی اقتصادی- زیست‏‌محیطی تولید جو برآورد شد؛ بدین ترتیب، متوسط سهم اجزای ردپای آب آبی، سبز و خاکستری در 31 استان کشور، در دورة زمانی 1399-1379، به ‏ترتیب، 74/12 و چهارده درصد است. بر اساس نتایج به‌دست‌آمده، در طول دوره مورد مطالعه، به‏ طور متوسط، بیشترین مقدار ردپای آب سبز مربوط به دو استان کهگیلویه‌وبویراحمد و مازنداران و کمترین مقدار آن مربوط به استان یزد و بیشترین و کمترین مقدار ردپای آب آبی، به ‏ترتیب، مربوط به استان‌­های ایلام و خوزستان بود؛ همچنین، کمترین مقدار ردپای آب خاکستری متعلق به استان آذربایجان‌غربی با 302 و بیشترین متعلق به استان زنجان با 1234 متر مکعب بر تن بود. در نهایت، نتایج محاسبه کارآیی اقتصادی- زیست‏‌محیطی نشان داد که استان‌های ایلام، قم و اصفهان کمترین کارآیی اقتصادی- زیست‏‌محیطی در تولید جو و استان‌های کهگیلویه‌‌و‌بویراحمد، کرمانشاه و کردستان، به ‏ترتیب، بیشترین کارآیی را دارند. نتایج برآورد تابع تولید مرزی تصادفی جو با استفاده از مدل کارآیی متغیر در طول زمان نشان داد که متغیرهای نهادة ترکیبی، ردپای آب آبی و ردپای آب سبز اثر معنی‌­دار بر تولید این محصول دارند. از سوی دیگر، میانگین کل کارآیی اقتصادی- زیست‏‌محیطی تولید جو 0/94 برآورد شد. همچنین، نتایج برآورد مدل ناکارآیی نشان داد که کارآیی اقتصادی- زیست‌‏محیطی تولید جو برای مناطقی با تولید ناخالص داخلی سرانه و میزان بارندگی بالاتر بیشتر است؛ به دیگر سخن، متغیرهای تولید ناخالص داخلی سرانه و میزان بارندگی سالانه اثر منفی بر ناکارآیی اقتصادی- زیست‌‏محیطی تولید جو دارند. بر اساس نتایج به ‏دست‌‏آمده، پیشنهاد می­‌شود که برای کاهش آلودگی و حفظ محیط زیست، استفاده از کودهای سبز و کودهای شیمیایی کم‌خطر و کنترل بیولوژیکی به ‏منظور کاهش ردپای آب خاکستری دنبال شود؛ همچنین، با ایجاد راهکارهایی مانند گسترش روش‌های آبیاری نوین، استفاده از ارقام مقاوم و با عملکرد بالا و مصرف صحیح کودهای شیمیایی با کاهش حجم آب در تولید جو، می‌‏توان وضعیت شاخص ردپای آب در ایران را بهبود بخشید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Calculating the Economic-Environmental Efficiency of Barley Crop Production Based on Water Footprint

نویسندگان [English]

  • Hamed Ghiasi 1
  • azar sheikhzeinoddin 2
1 PhD Student in Agricultural Economics, Faculty of Agriculture, Shiraz University, Shiraz University, Shiraz, Iran.
2 Assistant Professor of Agricultural Economics, Department of Agricultural Economics, Faculty of Agriculture, Shiraz University, Shiraz, Iran
چکیده [English]

Introduction: Due to the increase in population and the need to provide food and preserve the environment, the importance of the water crisis has increased in the years leading to the third millennium and the beginning of the 21st century. The reduction of underground and surface water resources and the destruction of the environment and water ecosystems are signs of the water crisis in Iran and the world. On the other hand, the production of agricultural products is associated with the creation of environmental effects, especially water and soil pollution (due to the use of pesticides and as a result, the loss of environmental balance). Therefore, there is a need for policy-makers to have indicators in the field of the effects of agricultural activities on natural resources and the environment, so that they can measure the economic and environmental effects. The water footprint index was first introduced by Hoekstra and Hung in 2002; and over recent years, it has been widely used by experts in different parts of the world. The water footprint is a multidimensional indicator that shows the volume of water consumed by the type of water source and the volume of polluted water by the type of pollutant. All components of the total water footprint are determined by time and place. The water footprint consists of three components, including blue water footprint, green water footprint and gray water footprint. Therefore, given the importance of sustainability of water resources, in this study, by considering the components of water footprint as inputs in the production function, the economic-environmental efficiency was estimated using the Stochastic Frontier Approach (SFA) for the production of barley in Iran; specifically, Water Footprint- Stochastic Frontier Approach (WF-SFA) framework was used to analyze the economic-environmental efficiency of barley production. Thus, in this study, in order to estimate the environmental effects, the water footprint index was used and the economic-environmental efficiency of barley production was estimated. For this purpose, the components of barley water footprint were calculated in the provinces producing this product. Then, the economic-environmental efficiency of barley production in the provinces of Iran was calculated.
Materials and Methods: In the first step, in order to calculate the water footprint, meteorological data was collected for the cities that had the highest level of barley cultivation in each province. This information included average wind speed (m/s), maximum temperature (c), minimum temperature (c), average temperature, 24-hour precipitation (mm), maximum relative humidity (%), minimum relative humidity (%), average relative humidity (%), sunny hours and daily radiation amount. The total water footprint during crop growth (WF) is the sum of blue, green and gray water components. After calculating the components of barely water footprint in the provinces of the country following Battese and Coelli (1995), an SFA model was created for barely production. In the year t, for the i province, the basic stochastic frontier production 

where yit is the product obtainable from input Xit (subtraction of inputs) and β is the vector of unknown parameters; in addition, vit represents random errors that are assumed to have a normal distribution with zero mean and variance σv2 and is distributed independently of uit.
In this study, in order to calculate the economic-environmental efficiency using the stochastic frontier production function, the appropriate production function form was first selected. The forms of the production function examined in this study are Cobb-Douglas and Translog. After choosing the appropriate production function and model type, the stochastic frontier production function was estimated by the maximum likelihood method as well as the economic-environmental efficiency of barley production was estimated.
Results and Discussion: By examining different barley producing provinces, it could be seen that the highest amount of total water footprint was related to the provinces of Ilam, Kerman, Sistan and Baluchistan and South Khorasan and the lowest amount was related to the provinces of Tehran, Golestan, Qazvin and Ardabil. The total amount of water footprint for most provinces was in the range of 3 to 4 thousand cubic meters. Also, the results showed that the barley water footprint in Iran did not follow a very specific geographical pattern, but in tropical and low-rainfall provinces such as Sistan and Baluchistan, the water footprint was higher and the main difference between the water footprints of the provinces was due to the blue water footprint. The results of the estimation of the stochastic frontier production function of barley production using the variable efficiency model over time showed that the combined input variables, blue water footprint and green water footprint had a significant effect on the production of this product. In this regard, the positive coefficient of the combined input variable (X1) and the green water footprint (X4) indicated that assuming the constancy of other conditions, a 1% increase in the amount of each of these variables would lead to an increase of about 1% in the production of barley among the provinces. These findings indicated the low level of accumulation of combined inputs in the production of barley due to the low production rate of this product and also the low amount of precipitation in the country. The labor force variable (X2) was not statistically significant; and the coefficient of this variable in the estimated production function indicated that the labor force had a very small positive effect on the efficiency of barley production. Therefore, due to the very low contribution of labor in barley production, it is expected that the amount of barley production in Iran will increase with the increase in the degree of mechanization.
 
Conclusions: The final results showed that the provinces of Ilam, Qom, and Isfahan had the lowest economic-environmental efficiency, and the provinces of Kohgiluyeh and Boyer Ahmad, Kermanshah, and Kurdistan had the highest economic-environmental efficiency in barley production, respectively. The overall average economic and environmental efficiency of wheat production was estimated at 0.94. Furthermore, the results of the estimation of the inefficiency model showed that the economic and environmental efficiency of barley production was higher for regions with higher per capita GDP and more rainfall. In other words, the variables of per capita GDP and annual rainfall negatively affect the economic and environmental inefficiency of barely. So, it is suggested to evaluate the effects of human and social capital on the economic-environmental efficiency of agricultural production in future studies. It is also suggested to follow the following methods to reduce pollution and preserve the environment: changing production methods, more efficient management and the use of superior technologies by ineffective provinces (for example, new irrigation methods to reduce the water footprint), the use of green fertilizers and so-called low-risk chemical fertilizers approved by international organizations to reduce the gray water footprint as one of the factors that reduce the efficiency and biological control instead of using pesticides (to reduce the gray water footprint) to eliminate pests. On the other hand, encouraging incentives and punishments are also very effective for farmers. The government should think of incentive measures to encourage efficient sectors; for example, it can give the priority of using resources with lower prices to farmers who produce less environmental pollution by using fewer chemical fertilizers and pesticides. Paying subsidies to efficient producers is also effective. On the other hand, environmental regulations should be set for producers. Establishing a tax on undesirable products to increase the motivation of producers and farmers to use environmentally friendly methods and techniques is also very effective.

کلیدواژه‌ها [English]

  • Economic-Environmental Efficiency
  • Water Footprint
  • Barely
  • Stochastic Frontier Production Function
  • Ababaei, B., & Etedali, H. R. (2014). Estimation of water footprint components of Iran’s wheat production: comparison of global and national scale estimates. Environmental Processes, 1(3), 193-205. DOI: 10.1007/s40710-014-0017-7.
  • Agustina, S. (2016). The influence of technical inefficiency level that involve farmer’s behaviour on risk towards profit in rice production of Indonesia. Russian Journal of Agricultural and Socio-Economic Sciences, 58(10), 3-12. DOI: 18551/rjoas.2016-10.01.
  • Aigner, D., Lovell, C. K., & Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models. Journal of Econometrics, 6(1), 21-37. DOI: 10.1016/0304-4076(77)90052-5.
  • Battese, G. E., & Coelli, T. J. (1995). A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empirical economics, 20, 325-332. DOI: 10.1007/BF01205442.
  • Bonfiglio, A., Arzeni, A., & Bodini, A. (2017). Assessing eco-efficiency of arable farms in rural areas. Agricultural Systems, 151, 114-125. DOI: 10.1016/j.agsy.2016.11.008.
  • Chapagain, A. K., Hoekstra, A. Y., & Savenije, H. H. (2006). Water saving through international trade of agricultural products. Hydrology and Earth System Sciences, 10(3), 455-468. DOI: 10.5194/hess-10-455-2006.
  • Dashti, Q., Mohammadpour, Z., & Ghahramanzadeh, M. (2020). Evaluating the relationship between economic efficiency and environmental efficiency in Iran's agricultural sector. Agricultural Knowledge and Sustainable Production, 30, 12. DOI: 1001.1.24764310.1399.30.4.13.0.
  • Döll, P., & Siebert, S. (2002). Global modeling of irrigation water requirements. Water Resources Research, 38(4). DOI: 10.1029/2001WR000355.
  • Emami Meybodi, A., Karimian, Z., & Rahmani Sefati, M. (2011). Measuring technical efficiency and productivity of Iranian petrochemical complexes (2001-2007). Journal of Energy Economics Studies, 29, 11. [In Persian]
  • Fankhauser, S., & Tol, R. S. (2005). On climate change and economic growth. Resource and Energy Economics, 27(1), 1-17. Doi: 10.1016/j.reseneeco.2004.03.003.
  • Fathi, F., Sheikhzeinoddin, A., & Talebnejad, R. (2020). Environmental and economic risk management of seed maize production in Iran. Journal of Cleaner Production, 258, 120772. DOI: 10.1016/j.jclepro.2020.120772.
  • Forleo, M. B., Palmieri, N., Suardi, A., Coaloa, D., & Pari, L. (2018). The eco-efficiency of rapeseed and sunflower cultivation in Italy: joining environmental and economic assessment. Journal of Cleaner Production, 172, 3138-3153. DOI: 10.1016/j.jclepro.2017.11.094.
  • Giusti, G., Marques, T. L., de Figueirêdo, M. C. B., & Silva, D. A. L. (2022). Integrating water footprint in the eco-efficiency assessment of Brazilian chilled chicken. Sustainable Production and Consumption, 33, 331-342.‏ DOI: 10.1016/j.spc.2022.07.009.
  • Ho, T. Q., Hoang, V.-N., Wilson, C., & Nguyen, T.-T. (2018). Eco-efficiency analysis of sustainability-certified coffee production in Vietnam. Journal of Cleaner Production, 183, 251-260. DOI: 10.1016/j.jclepro.2018.02.147.
  • Hoekstra, A. Y., & Chapagain, A. K. (2006). Water footprints of nations: water use by people as a function of their consumption pattern. In: Integrated assessment of water resources and global change (pp. 35-48). Springer. DOI: 10.1007/978-1-4020-5591-1_3.
  • Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M., & Mekonnen, M. M. (2011). The water footprint assessment manual: Setting the global standard. Routledge. DOI: 10.4324/9781849775526.
  • Hoekstra, A. Y., & Mekonnen, M. (2012). The water footprint of humanity. Proceedings of the National Academy of Sciences, 109(9), 3232-3237.  DOI: 10.1073/pnas.1109936109.
  • Hoekstra, P.Q., & Hung, A. (2002). Virtual water trade: a quantification of virtual water flows between nations in relation to international crop trade. Water Science & Technology, 49(11): 203-209.
  • Jaramillo, F., & Destouni, G. (2015). Local flow regulation and irrigation raise global human water consumption and footprint. Science, 350(6265), 1248-1251. DOI: 1126/science.aad1010.
  • Kouchaki-Penchah, H., Alizadeh, M. R., & Aghamolki, M. T. K. (2023). Measuring eco-efficiency of rice cropping systems in Iran: an integrated economic and environmental approach. Sustainable Energy Technologies and Assessments, 57, 103281.‏ DOI: 10.2139/ssrn.4220146.
  • Li, N., Xiao, X., Cao, G., & He, B. (2017). Agricultural eco-environment efficiency and shadow price measurement in Three Gorges Reservoir area under non-point source pollution constraints. Transactions of the Chinese Society of Agricultural Engineering, 33(11), 203-210. DOI: 11975/j.issn.1002-6819.2017.11.026.
  • Lovarelli, D., Bacenetti, J., & Fiala, M. (2016). Water footprint of crop productions: a review. Science of the Total Environment, 548, 236-251. DOI: 1016/j.scitotenv.2016.01.022.
  • Mardani, M., & Salarpour, M. (2015). Measuring technical efficiency of potato production in Iran using robust data envelopment analysis. Information Processing in Agriculture, 2(1), 6-14. DOI: 10.1016/j.inpa.2015.01.002.
  • Mehregan, F., & Sidboyer, S. (2020). Investigating the cost effect of environmental pollution on efficiency (case study: economic zones of China). Journal of Environmental Science and Technology, 22, 14. DOI: 10.22034/jest.2019.29384.3870. [In Persian]
  • Mekonnen, M. M., & Hoekstra, A. Y. (2011). The green, blue and grey water footprint of crops and derived crop products. Hydrology and Earth System Sciences, 15(5), 1577-1600. DOI: 10.5194/hess-15-1577-2011.
  • Molaei, M., Hesari, N., & Javan-Bakht, A. (2017). Estimating the environmental efficiency of input-oriented agricultural products (case study: environmental efficiency of rice production). Agricultural Economics (Economics and Agriculture), 11, 15. [In Persian]
  • Molaei, M., & Molaei, F. (2015). Estimation of environmental efficiency of agriculture. Agricultural Knowledge and Sustainable Production, 25, 10. [In Persian]
  • Molaei, M., & Sani, F. (2015). Estimation of technical efficiency and environmental efficiency of Sarab dairy farms (data envelopment analysis approach). Animal Sciences Research, Scientific Research Journal of the Faculty of Agriculture, 25, 14. [In Persian]
  • Molden, D., Oweis, T. Y., Pasquale, S., Kijne, J. W., Hanjra, M. A., Bindraban, P. S., Bouman, B. A., Mahoo, H. F., Silva, P., & Upadhyaya, A. (2007). Pathways for increasing agricultural water productivity. DOI: 22004/ag.econ.158005.
  • Nowruzian, M., Esfandiari, M., Hosseini, M., & Musapur, S. (2019). Investigation of environmental efficiency of cotton growers in Iran. Journal of Natural Environment, 72, 13. [In Persian]
  • Prasad, P., Pagan, R. J., Kauter, M. D., & Price, N. (2005). Eco-efficiency for the dairy processing industry. The Proceedings of

    Environmental Science, Business. Corpus ID: 107629267.

  • Robaina-Alves, M., Moutinho, V., & Macedo, P. (2015). A new frontier approach to model the eco-efficiency in European countries. Journal of Cleaner Production, 103, 562-573. DOI: 10.1016/j.jclepro.2015.01.038.
  • Schaltegger, S., & Sturm, A. (1990). Ökologische rationalität: ansatzpunkte zur ausgestaltung von ökologieorientierten managementinstrumenten. die Unternehmung, 273-290. Available at https://www.jstor.org/stable/24180467.
  • Song, J., & Chen, X. (2019). Eco-efficiency of grain production in China based on water footprints: a stochastic frontier approach. Journal of Cleaner Production, 236, 117685. DOI: 10.1016/j.jclepro.2019.117685.
  • Thanawong, K., Perret, S., & Basset-Mens, C. (2014). Eco-efficiency of paddy rice production in Northeastern Thailand: a comparison of rain-fed and irrigated cropping systems. Journal of Cleaner Production, 73, 204-217. DOI: 10.1016/j.jclepro.2013.12.067.
  • Tsigaris, P., & Wood, J. (2019). The potential impacts of climate change on capital in the 21st century. Ecological Economics, 162, 74-86. DOI: 1016/j.ecolecon.2019.04.009.
  • Yadollahi, A. (2020). Analysis of grain technology in Iran. Third International Conference on Interdisciplinary Studies in Food Industry and Nutrition Sciences. [In Persian]
  • Yang, R.-Y., Chang, L.-C., Hsu, J.-C., Weng, B. B., Palada, M. C., Chadha, M., & Levasseur, V. (2006). Nutritional and functional properties of Moringa leaves: from germplasm, to plant, to food, to health. In: Moringa leaves: strategies, standards and markets for a better impact on nutrition in Africa. Moringanews, CDE, CTA, GFU. Paris, pp. 1-9.
  • Zhang, C., & Anadon, L. D. (2014). A multi-regional input-output analysis of domestic virtual water trade and provincial water footprint in China. Ecological Economics, 100, 159-172. DOI: 10.1016/j.ecolecon.2014.02.006.
  • Zhang, J., Terrones, M., Park, C. R., Mukherjee, R., Monthioux, M., Koratkar, N., Kim, Y. S., Hurt, R., Frackowiak, E., & Enoki, T. (2016). Carbon science in 2016: status, challenges and perspectives. Carbon, 98(70), 708-732. DOI: 1016/j.carbon.2015.11.060.